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UNIT - 3 

 PERMUTATIONS 

Any arrangement of a set of n objects in a given order is called a permutation of the object 

(taken all at a time). Any arrangement of any r n of these objects in a given order is called an 

“r-permutation” or “a permutation of the n objects taken r at a time.” Consider, for example, 

the set of letters A, B, C, D. Then: 

(i) BDCA, DCBA, and ACDB are permutations of the four letters (taken all at a time). 
(ii) BAD, ACB, DBC are permutations of the four letters taken three at a time. 

(iii) AD, BC, CA are permutations of the four letters taken two at a time. 

We usually are interested in the number of such permutations without listing them. 

The number of permutations of n objects taken r at a time will be denoted by 

P (n, r) (other texts may use nPr , Pn,r , or (n)r ). 

The following theorem applies. 

Theorem 5.4:  

 

We emphasize that there are r factors in n(n − 1)(n − 2) ··· (n − r + 1). 

 

EXAMPLE  Find the number m of permutations of six objects, say, A, B, C, D, E, F, taken 

three at a time. In other words, find the number of “three-letter words” using only the given 

six letters without repetition. 

Let us represent the general three-letter word by the following three positions: 

——,  ——, —— 

The first letter can be chosen in 6 ways; following this the second letter can be chosen in 5 

ways; and, finally, the third letter can be chosen in 4 ways. Write each number in its 

appropriate position as follows: 

  6 ,  5 ,  4  

By the Product Rule there are m  6  5  4  120 possible three-letter words without repetition 

from the six   letters. Namely, there are 120 permutations of 6 objects taken 3 at a time. This 

agrees with the formula in Theorem 5.4: 

P (6, 3) = 6 · 5 · 4 = 120 

In fact, Theorem 5.4 is proven in the same way as we did for this particular case. 

 

Consider now the special case of P (n, r) when r = n. We get the following result. 

 

Corollary : There are n! permutations of n objects (taken all at a time). 

For example, there are 3!= 6 permutations of the three letters A, B, C. These are: 

ABC, ACB, BAC, BCA, CAB, CBA. 

 

 



 

Permutations with Repetitions 

Frequently we want to know the number of permutations of a multiset, that is, a set of 

objects some of which are alike. We will let 

P (n; n1, n2, ..., nr ) 

denote the number of permutations of n objects of which n1 are alike, n2 are alike, .. ., nr are 

alike. The general formula follows: 

 

We indicate the proof of the above theorem by a particular example. Suppose we want to 
form all possible five-letter “words” using the letters from the word “BABBY.” Now there are 
5!= 120 permutations of the objects B1, A, B2, B3, Y, where the three B’s are distinguished. 

Observe that the following six permutations 

 

B1B2 B3AY , B2B1 B3AY , B3B1 B2AY , B1B3 B2AY , B2B3 B1AY , B3B2 B1AY 

 

produce the same word when the subscripts are removed. The 6 comes from the fact that there 

are 3! = 3·2·1 = 6 different ways of placing the three B’s in the first three positions in the 

permutation. This is true for each set of three positions in which the B’s can appear. 

Accordingly, the number of different five-letter words that can be formed using the letters 

from the word “BABBY” is: 

                                         
EXAMPLE:  Find the number m of seven-letter words that can be formed using the letters of 

the word “BENZENE.” 

We seek the number of permutations of 7 objects of which 3 are alike (the three E’s), and 2 are 

alike (the two N’s). By Theorem 5.6, 

 

 
Ordered Samples 

Many problems are concerned with choosing an element from a set S, say, with n elements. 

When we choose one element after another, say, r times, we call the choice an ordered sample 

of size r. We consider two cases. 

 

(1) Sampling with replacement 

Here the element is replaced in the set S before the next element is chosen. Thus, each time 

there are n ways to choose an element (repetitions are allowed). The Product rule tells us that 

the number of such samples is: 

n · n · n ··· n · n(r factors) = nr 
 
 
 
 



r 

 

(2) Sampling without replacement 

Here the element is not replaced in the set S before the next element is chosen. Thus, there is 

no repetition in the ordered sample. Such a sample is simply an r-permutation. Thus the 

number of such samples is: 

  
EXAMPLE: Three cards are chosen one after the other from a 52-card deck. Find the number 

m of ways this can be done: (a) with replacement; (b) without replacement. 

 

(a) Each card can be chosen in 52 ways. Thus m = 52(52)(52) = 140 608. 

(b) Here there is no replacement. Thus the first card can be chosen in 52 ways, the second in 

51 ways, and the third in 50 ways. Therefore: 

                               m = P(52, 3) = 52(51)(50) = 132 600 
 

COMBINATIONS 

Let S be a set with n elements. A combination of these n elements taken r at a time is any 

selection of r of the elements where order does not count. Such a selection is called an r-

combination; it is simply a subset of S with r elements. The number of such combinations will 

be denoted by 
 

C(n, r) (other texts may use nCr , Cn,r, or Cn). 

 

Before we give the general formula for C(n, r), we consider a special case. 

 

EXAMPLE 5.7 Find the number of combinations of 4 objects, A, B, C, D, taken 3 at a time. 

Each combination of three objects determines 3!= 6 permutations of the objects as follows: 

ABC :  ABC,  ACB,   BAC,   BCA,   CAB,   
CBA ABD :  ABD,  ADB,  BAD,  BDA,  
DAB,   DBA  ACD :  ACD,  ADC,  CAD,  
CDA,  DAC,  DCA  BCD : BDC, BDC, 
CBD, CDB, DBC, DCB 

Thus the number of combinations multiplied by 3! gives us the number of permutations; that 

is, 

          

But P (4, 3) = 4 · 3 · 2 = 24 and 3!= 6; hence C(4, 3) = 4 as noted above. 

As indicated above, any combination of n objects taken r at a time determines r! permutations of 

the objects in the combination; that is, 

P (n, r) = r! C(n, r) 

Accordingly, we obtain the following formula for C(n, r) which we formally state as a theorem. 

 



 
 

EXAMPLE:  A farmer buys 3 cows, 2 pigs, and 4 hens from a man who has 6 cows, 5 pigs, 

and 8 hens. Find the number m of choices that the farmer has. 

The farmer can choose the cows in C(6, 3) ways, the pigs in C(5, 2) ways, and the hens in C(8, 

4) ways. Thus the number m of choices follows: 

 

 
 

THE PIGEONHOLE PRINCIPLE 

 

Many results in combinational theory come from the following almost obvious statement. 

 

Pigeonhole Principle: If n pigeonholes are occupied by n + 1 or more pigeons, then at least 

one pigeonhole is occupied by more than one pigeon. 

This principle can be applied to many problems where we want to show that a given situation 

can occur. 

EXAMPLE:  

(a) Suppose a department contains 13 professors, then two of the professors (pigeons) were 

born in the same month (pigeonholes). 

 

(b) Find the minimum number of elements that one needs to take from the set S = {1, 2, 3, . . . , 

9} to be sure that two of the numbers add up to 10. 

Here the pigeonholes are the five sets {1, 9}, {2, 8}, {3, 7}, {4, 6}, {5}. Thus any choice of 

six elements (pigeons) of S will guarantee that two of the numbers add up to ten. 

 

The Pigeonhole Principle is generalized as follows. 

 

Generalized Pigeonhole Principle: If n pigeonholes are occupied by kn + 1 or more pigeons, 

where k is a positive integer, then at least one pigeonhole is occupied by k + 1 or more 

pigeons. 

 

 



EXAMPLE: Find the minimum number of students in a class to be sure that three of them are 

born in the same month. 

 

Here the n = 12 months are the pigeonholes, and k + 1 = 3 so k = 2. Hence among any kn + 1 = 

25 students (pigeons), three of them are born in the same month. 

 

 

UNIT-2 
 

DIRECTED GRAPHS 

A directed graph G or digraph (or simply graph) consists of two things: 

(i) A set V whose elements are called vertices, nodes, or points. 

(ii) A set E of ordered pairs (u, v) of vertices called arcs or directed edges or simply edges. 

We will write G(V, E) when we want to emphasize the two parts of G. We will also write V 

(G) and E(G) to denote, respectively, the set of vertices and the set of edges of a graph G. (If it 

is not explicitly stated, the context usually determines whether or not a graph G is a directed 

graph.) 

Suppose e = (u, v) is a directed edge in a digraph G. Then the following terminology is used: 

(a) e begins at u and ends at v. 

(b) u is the origin or initial point of e, and v is the destination or terminal point of e. 

(c) v is a successor of u. 

(d) u is adjacent to v, and v is adjacent from u. 

If u = v, then e is called a loop. 

The set of all successors of a vertex u is important; it is denoted and formally defined by 

succ(u) = {v ∈  V | there exists an edge (u, v) ∈  E}. 

It is called the successor list or adjacency list of u. 

 

A picture of a directed graph G is a representation of G in the plane. That is, each vertex u of 

G is represented by a dot (or small circle), and each (directed) edge e = (u, v) is represented by 

an arrow or directed curve from the initial point u of e to the terminal point v. One usually 

presents a digraph G by its picture rather than explicitly listing its vertices and edges. 

If the edges and/or vertices of a directed graph G are labeled with some type of data, then G is 

called a labeled directed graph. 

A directed graph (V, E) is said to be finite if its set V of vertices and its set E of edges are 

finite. 

EXAMPLE 1 

(a) Consider the directed graph G pictured in Fig. 9-1(a). It consists of four vertices, A, B, 

C, D, that is, V (G) = {A,B,C,D} and the seven following edges: 

 

              E(G) = {e1, e2, . . . , e7} = {(A,D), (B, A), (B, A), (D,B), (B,C), (D,C), (B, B)} 

 

The edges e2 and e3 are said to be parallel since they both begin at B and end at      A. 

The edge e7 is a loop since it begins and ends at B. 



 
 

 

(b) Suppose three boys, A,B,C, are throwing a ball to each other such that A always throws the 

ball to B, but B and C are just as likely to throw the ball to A as they are to each other. This 

dynamic system is pictured in Fig. 9-1(b) where edges are labeled with the respective 

probabilities, that is, A throws the ball to B with probability 1, B throws the ball to A and C 

each with probability 1/2, and C throws the ball to A and B each with probability 1/2. 

 

 

Subgraphs 

Let G = G(V,E) be a directed graph, and let V ` be a subset of the set V of vertices of G. 

Suppose E` is a subset of E such that the endpoints of the edges in E` belong to V`. Then 

H(V`,E`) is a directed graph, and it is called a subgraph of G. In particular, if E` contains all 

the edges in E whose endpoints belong to V`, then H(V`,E`) is called the subgraph of G 

generated or determined by V`. For example, for the graph G = G(V,E) in Fig. 9-1(a), H(V`,E`) 

is the subgraph of G determine by the vertex set V` where 

V’ = {B, C, D} and E` =(e4, e5, e6, e7)= {(D, B), (B, C), (D, C), (B, B)} 

 

BASIC DEFINITIONS 

This section discusses the questions of degrees of vertices, paths, and connectivity in a 

directed graph. 

 

Degrees 

Suppose G is a directed graph. The outdegree of a vertex v of G, written outdeg(v), is the 

number of edges beginning at v, and the indegree of v, written indeg(v), is the number of edges 

ending at v. Since each edge begins and ends at a vertex we immediately obtain the following 

theorem. 

Theorem 9.1: The sum of the outdegrees of the vertices of a digraph G equals the sum of the 

indegrees of the vertices, which equals the number of edges in G. 

A vertex v with zero indegree is called a source, and a vertex v with zero outdegree is called a 

sink. 

EXAMPLE 2 Consider the graph G in Fig. 9-1(a).We have: 

outdeg (A) = 1, outdeg (B)= 4, outdeg (C) = 0, outdeg (D)= 2, 

                           indeg (A) = 2, indeg (B)= 2, indeg (C) = 2, indeg (D) = 1. 

As expected, the sum of the outdegrees equals the sum of the indegrees, which equals the 

number 7 of edges.The vertex C is a sink since no edge begins at C. The graph has no sources. 

 



Paths 

 

Let G be a directed graph. The concepts of path, simple path, trail, and cycle carry over from 

nondirected graphs to the directed graph G except that the directions of the edges must agree 

with the direction of the path. Specifically: 

(i) A (directed) path P in G is an alternating sequence of vertices and directed edges, say, 

P =(v0, e1, v1, e2, v2, . . . , en, vn) 

such that each edge ei begins at vi−1 and ends at vi . If there is no ambiguity, we denote P by 

its sequence of vertices or its sequence of edges. 

(ii) The length of the path P is n, its number of edges. 

(iii) A simple path is a path with distinct vertices. A trail is a path with distinct edges. 

(iv) A closed path has the same first and last vertices. 

(v) A spanning path contains all the vertices of G. 

(vi) A cycle (or circuit) is a closed path with distinct vertices (except the first and last). 

(vii) Asemipath is the same as a path except the edge ei may begin at vi−1 or vi and end at the 

other vertex. Semitrails and semisimple paths are analogously defined. 

 

A vertex v is reachable from a vertex u if there is a path from u to v. If v is reachable from u, 

then (by eliminating redundant edges) there must be a simple path from u to v. 

 

 

EXAMPLE 9.3 Consider the graph G in Fig. 9-1(a). 

(a) The sequence P1 = (D,C,B,A) is a semipath but not a path since (C,B) is not an edge; that is, 

the direction of e5 = (C,B) does not agree with the direction of P1. 

(b) The sequence P2 = (D,B,A) is a path from D to A since (D, B) and (B, A) are edges. Thus A 

is reachable from D. 

 

 

Connectivity 

There are three types of connectivity in a directed graph G: 

(i) G is strongly connected or strong if, for any pair of vertices u and v in G, there is a path 

from u to v and a path from v to u, that is, each is reachable from the other. 

(ii) G is unilaterally connected or unilateral if, for any pair of vertices u and v in G, there is a 

path from u to v or a path from v to u, that is, one of them is reachable from the other. 

(iii) G is weakly connected or weak if there is a semipath between any pair of vertices u and v 

in G. 

Let G` be the (nondirected) graph obtained from a directed graph G by allowing all edges in G 

to be nondirected. Clearly, G is weakly connected if and only if the graph G` is connected. 

 

Observe that strongly connected implies unilaterally connected which implies weakly 

connected. We say that G is strictly unilateral if it is unilateral but not strong, and we say that 

G is strictly weak if it is weak but not unilateral. 

 

Connectivity can be characterized in terms of spanning paths as follows: 

 

 

 

 

 



Theorem 9.2: Let G be a finite directed graph. Then: 

(i) G is strong if and only if G has a closed spanning path. 

(ii) G is unilateral if and only if G has a spanning path. 

(iii) G is weak if and only if G has a spanning semipath. 

 

EXAMPLE: Consider the graph G in Fig. 9-1(a). It is weakly connected since the underlying 

nondirected graph is connected. There is no path from C to any other vertex, that is, C is a 

sink, so G is not strongly connected. However, P = (B,A,D,C) is a spanning path, so G is 

unilaterally connected. 

Graphs with sources and sinks appear in many applications (such as flow diagrams and 

networks).A sufficient condition for such vertices to exist follows. 

 

Theorem 9.3: Suppose a finite directed graph G is cycle-free, that is, contains no (directed) 

cycles. Then G contains a source and a sink. 

Proof: Let P = (v0, v1, . . . , vn) be a simple path of maximum length, which exists since G is 

finite. Then the last vertex vn is a sink; otherwise an edge (vn, u) will either extend P or form a 

cycle if u = vi , for some i. Similarly, the first vertex v0 is a source. 

 

 

SEQUENTIAL REPRESENTATION OF DIRECTED GRAPHS 

There are two main ways of maintaining a directed graph G in the memory of a computer. One 

way, called the sequential representation of G, is by means of its adjacency matrix A. The 

other way, called the linked representation of G, is by means of linked lists of neighbors. This 

section covers the first representation. The linked representation will be covered in Section 

9.7.  

Suppose a graph G has m vertices (nodes) and n edges. We say G is dense if m = O(n2) and 

sparse if m = O(n) or even if m = O(n log n). The matrix representation of G is usually used 

when G is dense, and linked lists are usually used when G is sparse. Regardless of the way one 

maintains a graph G in memory, the graph G is normally input into the computer by its formal 

definition, that is, as a collection of vertices and a collection of edges (pairs of vertices). 

 

Remark: In order to avoid special cases of our results, we assume, unless otherwise stated, 

that m>1 where m is the number of vertices in our graph G. Therefore, G is not connected if G 

has no edges. 

 

Digraphs and Relations, Adjacency Matrix 

Let G(V, E) be a simple directed graph, that is, a graph without parallel edges. Then E is 

simply a subset of V × V, and hence E is a relation on V . Conversely, if R is a relation on a set 

V, then G(V, R) is a simple directed graph. Thus the concepts of relations on a set and simple 

directed graphs are one and the same.  

Suppose G is a simple directed graph with m vertices, and suppose the vertices of G have been 

ordered and are called v1, v2,…,vm. Then the adjacency matrix A = [ai j] of G is the m × m 

matrix defined as follows: 

 

 
 



Such a matrix A, which contains entries of only 0 or 1, is called a bit matrix or a Boolean 

matrix. (Although the adjacency matrix of an undirected graph is symmetric, this is not true 

here for a directed graph.) 

The adjacency matrix A of the graph G does depend on the ordering of the vertices of G. 

However, the matrices resulting from two different orderings are closely related in that one 

can be obtained from the other by simply interchanging rows and columns. Unless otherwise 

stated, we assume that the vertices of our matrix have a fixed ordering. 

Remark: The adjacency matrix A = [ai j] may be extended to directed graphs with parallel 

edges by setting: 

ai j= the number of edges beginning at vi and ending at vj 

 

Then the entries of A will be nonnegative integers. Conversely, every m × m matrix A with 

nonnegative integer entries uniquely defines a directed graph with m vertices. 

 

EXAMPLE: Let G be the directed graph in Fig. 9-4(a) with vertices v1, v2, v3, v4. Then the 

adjacency matrix A of G appears in Fig. 9-4(b). Note that the number of 1’s in A is equal to the 

number (eight) of edges. 

 

 

 

Consider the powers A, A2, A3,… of the adjacency matrix A = [ai j] of a graph G. Let 

ak(i, j ) = the ij entry in the matrix Ak 

Note that a1(i, j ) = aij gives the number of paths of length 1 from vertex vi to vertex vj . One 

can show that a2(i, j ) gives the number of paths of length 2 from vi to vj .  

 

Proposition 9.4: Let A be the adjacency matrix of a graph G. Then ak(i, j ), the ij entry in the 

matrix Ak, gives the number of paths of length K from vi to vj . 

EXAMPLE 9.7 Consider again the graph G and its adjacency matrix A appearing in Fig. 9-4. 

The powers A2, A3, and A4 of A follow: 

 

 

 

Observe that a2 (4, 1) = 1, so there is a path of length 2 from v4 to v1. Also, a3(2, 3) = 2, so 

there are two paths of length 3 from v2 to v3; and a4(2, 4) = 5, so there are five paths of length 

4 from v2 to v4. 

 



Remark: Let A be the adjacency matrix of a graph G, and let Br be the matrix defined by: 

Br= A + A2 + A3 +・ ・ ・+Ar 

Then the ij entry of the matrix Br gives the number of paths of length r or less from vertex vi to 

vertex vj . 

Path Matrix 

Let G = G(V,E) be a simple directed graph with m vertices v1, v2, . . ., vm. The path matrix or 

reachability matrix of G is the m-square matrix P = [pij] defined as follows: 

 
(The path matrix P may be viewed as the transitive closure of the relation E on V .) 

 

 

Suppose now that there is a path from vertex vi to vertex vj in a graph G with m vertices. Then 

there must be a simple path from vi to vj when vi ≠ vj , or there must be a cycle from vi to vj 

when vi = vj  . Since G has m vertices, such a simple path must have length m − 1 or less, or 

such a cycle must have length m or less. This means that there is a nonzero ij entry in the 

matrix Bm (defined above) where A is the adjacency matrix of G. Accordingly, the path matrix 

P and Bm have the same nonzero entries. We state this result formally. 

Proposition 9.5: Let A be the adjacency matrix of a graph G with m vertices. Then the path 

matrix P and Bm have the same nonzero entries where 

Bm = A + A2 + A3 +・ ・ ・+Am 

Recall that a directed graph G is said to be strongly connected if, for any pair of vertices u and 

v in G, there is a path from u to v and from v to u. Accordingly, G is strongly connected if and 

only if the path matrix P of G has no zero entries. This fact together with Proposition 9.5 gives 

the following result. 

Proposition 9.6: Let A be the adjacency matrix of a graph G with m vertices. Then G is 

strongly connected if and only if Bm has no zero entries where 

Bm = A + A2 + A3 +・ ・ ・+Am 

EXAMPLE 9.8 Consider the graph G and its adjacency matrix A appearing in Fig. 9-4. Here 

G  has m = 4 vertices. Adding the matrix A and matrices A2, A3, A4 in Example 9.7, we obtain 

the following matrix B4 and also path (reachability) matrix P by replacing the nonzero entries 

in B4 by 1: 

 

 

Examining the matrix B4 or P, we see zero entries; hence G is not strongly connected. In 

particular, we see that the vertex v2 is not reachable from any of the other vertices. 

 

Remark: The adjacency matrix A and the path matrix P of a graph G may be viewed as 

logical (Boolean) matrices where 0 represents “false” and 1 represents “true.” Thus the logical 

operations of ∧  (AND) and ∨  (OR) may be applied to the entries of A and P where these 

operations, used in the next section, are defined in Fig. 9-5. 



 

 

Transitive Closure and the Path Matrix 

Let R be a relation on a finite set V with m elements. As noted above, the relation R may be 

identified with the simple directed graph G=G (V, R). We note that the composition relation  

R2 = R ×R consists of all pairs (u, v) such that there is a path of length 2 from u to v. Similarly: 

Rk = {(u, v)| there is a path of lengthK from u to v}. 

 

The transitive closure R* of the relation R on V may now be viewed as the set of ordered pairs 

(u, v) such that there is a path from u to v in the graph G. Furthermore, by the above 

discussion, we need only look at simple paths of length m − 1 or less and cycles of length m or 

less. Accordingly, we have the following result which characterizes the transitive closure R* 

of R. 

 

Theorem 9.7: Let R be a relation on a set V with m elements. Then: 

                    (i) R* = R ∪  R2 ∪  . . . ∪  Rm is the transitive closure of R. 

(ii) The path matrix P of G(V, R) is the adjacency matrix of G`(V, R*). 

 

LINKED REPRESENTATION OF DIRECTED GRAPHS 

Let G be a directed graph with m vertices. Suppose the number of edges of G is O(m) or even 

O(m log m), that is, suppose G is sparse. Then the adjacency matrix A of G will contain many 

zeros; hence a great deal of memory space will be wasted. Accordingly, when G is sparse, G is 

usually represented in memory by some type of linked representation, also called an 

adjacency structure, which is described below by means of an example. 

 

Consider the directed graph G in Fig. 9-9(a). Observe that G may be equivalently defined by 

the table in Fig. 9-9(b), which shows each vertex in G followed by its adjacency list, also 

called its successors or neighbors. Here the symbol denotes an empty list. Observe that 

each edge of G corresponds to a unique vertex in an adjacency list and vice versa. Here G has 

seven edges and there are seven vertices in the adjacency lists. This table may also be 

presented in the following compact form where a colon “:” separates a vertex from its list of 



neighbors, and a semicolon “;” separates the different lists: 

G = [A : B,C,D; B : C; C : _; D : C,E; E : C] 

The linked representation of a directed graph G maintains G in memory by using linked lists 

for its adjacency lists. Specifically, the linked representation will normally contain two files 

(sets of records), one called the Vertex File and the other called the Edge File, as follows. 

 

(a) Vertex File: The Vertex File will contain the list of vertices of the graph G usually 

maintained by an array or by a linked list. Each record of the Vertex File will have the form 

 

 

Here VERTEX will be the name of the vertex, NEXT-V points to the next vertex in the list of 

vertices in the Vertex File, and PTR will point to the first element in the adjacency list of the 

vertex appearing in the Edge File. The shaded area indicates that there may be other 

information in the record corresponding to the vertex. 

(b) Edge File: The Edge File contains the edges of G and also contains all the adjacency lists 

of G where each list is maintained in memory by a linked list. Each record of the Edge File 

will represent a unique edge in G and hence will correspond to a unique vertex in an adjacency 

list. The record will usually have the form 

 

 

 

Here: 

(1) EDGE will be the name of the edge (if it has a name). 

(2) BEG-V- points to location in the Vertex File of the initial (beginning) vertex of the edge. 

(3) END-V points to the location in theVertex File of the terminal (ending) vertex of the edge. 

The adjacency lists appear in this field. 

(4) NEXT-E points to the location in the Edge File of the next vertex in the adjacency list. 

 

We emphasize that the adjacency lists consist of terminal vertices and hence are maintained by 

the END-V field. The shaded area indicates that there may be other information in the record 

corresponding to the edge. We note that the order of the vertices in any adjacency list does 

depend on the order in which the edges (pairs of vertices) appear in the input. 

 

Figure 9-10 shows how the graph G in Fig. 9-9(a) may appear in memory. Here the vertices of 

G are maintained in memory by a linked list using the variable START to point to the first 

vertex. (Alternatively, one could use a linear array for the list of vertices, and then NEXT-V 

would not be required.) The choice of eight locations for the Vertex File and 10 locations for 

the Edge File is arbitrary. The additional space in the files will be used if additional vertices or 

edges are inserted in the graph. Figure 9-10 also shows, with arrows, the adjacency list [B, C, 

D] of the vertex A. 

 

 

 

 

 

 



 

RECURRENCE RELATIONS  

Definition 

A recurrence relation is an equation that recursively defines a sequence where the next term is 

a function of the previous terms (Expressing Fn as some combination of Fi with i<n). 

 

Example − Fibonacci series Fn= Fn-1+ Fn-2,   

                   Tower of Hanoi   Fn=2Fn-1+1 

Linear Recurrence Relations 

A linear recurrence equation of degree k or order k is a recurrence equation which is in the 

format xn= A1xn-1 +A2 xn-1 +A3 xn-1 +……..Ak xn-k (An is a constant and Ak≠0) on a sequence 

of numbers as a first-degree polynomial. 

These are some examples of linear recurrence equations − 

 

Recurrence relations Initial values Solutions 

Fn = Fn-1 + Fn-2 a1 = a2 = 1 Fibonacci number 

Fn = Fn-1 + Fn-2 a1 = 1, a2 = 3 Lucas Number 

Fn = Fn-2 + Fn-3 a1 = a2 = a3 = 1 Padovan sequence 

Fn = 2Fn-1 + Fn-2 a1 = 0, a2 = 1 Pell number 



How to solve linear recurrence relation 

Suppose, a two ordered linear recurrence relation is – Fn=AFn-1+BFn-2 where A and B are real 

numbers. 

The characteristic equation for the above recurrence relation is − 

x2−Ax−B=0 

Three cases may occur while finding the roots − 

 

Case 1 − If this equation factors as (x−x1)(x−x2)=0 and it produces two distinct real 

roots x1 and x2, then Fn=ax1
n+bx2

n is the solution. [Here, a and b are constants] 

Case 2 − If this equation factors as (x−x1)
2=0 and it produces single real root x1, 

then Fn=ax1
n+bnx1

n is the solution. 

Case 3 − If the equation produces two distinct complex roots, x1 and x2 in polar 

form x1=r∠θ and x2=r∠(−θ), then Fn=rn(acos(nθ)+bsin(nθ)) is the solution. 

 

 

Problem 1 

Solve the recurrence relation Fn=5Fn-1− 6Fn-2 where F0=1 and F1=4 

Solution 

The characteristic equation of the recurrence relation is − 

x2−5x+6=0, 

So, (x−3)(x−2)=0 

Hence, the roots are − 

x1=3 and x2=2 

The roots are real and distinct. So, this is in the form of case 1 

Hence, the solution is − 

Fn=ax1
n+bx2

n 

Here, Fn=a3n+b2n (As x1=3 and x2=2) 

Therefore, 

1= F0=a30+b20 = a+b 

4= F1=a31+b21  =3a+2b 

Solving these two equations, we get a=2 and b=−1 

Hence, the final solution is − 

Fn=2.3n+(−1).2n=2.3n−2n 



 


	PERMUTATIONS
	Permutations with Repetitions
	RECURRENCE RELATIONS
	Definition
	Linear Recurrence Relations
	How to solve linear recurrence relation


